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Abstract 

The salts [NEt,][W(~R)(C0)2($-C,B,oH,,Me,)l (R = C,H,Me-4 (Ia) or 
C,H,Mq-2,6 (Ib)) have been prepared and used to synthesise complexes with bonds 
between tungsten and gold, rhodium, and iron. The structure of Ib has been 
established by X-ray diffraction, demonstrating the docosahedral nature of the 
C,B,,W framework. 

We have successfully employed salts of the anionic complexes [W(=CR)(CO),- 
($-C,B9H,Mez)]- (R = alkyl or aryl) as reagents for preparing a variety of hetero- 
di- and &nuclear metal complexes [l]. The W< bonds in these salts readily add 
metal ligand fragments, thereby forming metal-metal bonds bridged by alkylidyne 
groups. In some of the products the $-CzBsH,Me,*- ligand, isolobal with v5-C5H5-, 
adopts a spectator role, as in the compounds [WAu(@C6H,Me-4)(CO)2(PPh,)(~5- 
C2&H,Me2)] and [WRh(p-CC6H,Me-4)(CO)2(PPh3)2(n5-C2&H9Me2)], prepared 
by treating [N(PPhs)2][W(~C6H,Me-4)(CO)2(~5-C2B$19Me2)] with [AuCl(PPh,)] 
and [Rh(cod)(PPh,),][PF,] (cod = cycloocta-1,5-diene), respectively [lb]. However, 
in the majority of the reactions novel complexes result as a consequence of the 
icosahedral C,bH,Me, fragment bridging the heteronuclear metal-metal linkages 
while remaining q5-coordinated to the tungsten atom. This bridge bonding is 
accomplished through the formation of exopolyhedral B-H-metal or B-metal 
bonds. The net result has been the synthesis of cluster compounds with unprece- 
dented structures. 

The involvement of the n5-C,BgH,Me2 ligand in reactions of the species 
[W(=CR)(CO)2(175-C2B,H,Me2)]- prompted us to prepare the related salts 
[NEt,][W(&R)(CO)2(~6-C2B10H10Me,)] (R = C,H,Me-4 (Ia) or C,H,Me,,-2,6 
(Ib)). In these salts the tungsten atom occupies a vertex in a docosahedral C,B,,W 
cage, in contrast with its occupation of an icosahedral site in the C,B,W group 
present in the anions [W(<R)(CO)2(~5-C2BgH9Me2)]-. It was anticipated that the 
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reagents I would also be useful precursors in the synthesis of compounds with 
metal-metal bonds and that the properties of the products containing C,B,,W cages 
would differ from those with a C,bW framework isolated previously [l]. 

Treatment of the alkylidyne compounds [W(=CR)Cl(CO),(py)J (R = C,H,Me-4 
or C,H,Me,,-2,6) with Na,[C,B,,H,,Me,] [2] in thf (tetrahydrofuran) at room 
temperature, with addition of NEt,Cl, affords the yellow salts I in ca. 70% yield 
[3*]. The structure of Ib was established [4 * ] by X-ray diffraction, and the anion is 
shown in Fig. 1. The #-coordination mode of the C2B,, cage results in a decidedly 
non-planar B(3)C(4O)B(S)B(6)B(7$(20) face ligating the tungsten atom. The 
C(20)-W (2.26(l) A) and C(40)-W (2.56(l) A) distances are distinctly different. The 
occurrence of the six atom face above the B(8)-B(12) five-membered ring results in 
deviations in the CZBl,,W framework from the triangular faces observed in icosa- 
hedral cage structures. Thus the long B(3)-B(8) (1.99(2) A) and B(7)-B(8) (1.98(2) 
A) connectivities lead to the presence of two essentially square faces 
B(3)C(2O)B(QB(9) and B(7)C(20)B@)B(12). This effect has been observed previ- 
ously in docosahedral metallacarbaborane complexes [5]. The tungsten atom in Ib is 
also ligated by two CO groups, and the alkylidyne fragment. The C(l)=W sep- 
!ration (1.84(l) A) may be compared with that found for the C=W bond (1.826(7) 
A) in the salt [PPh,][W(~C6H,Me-4)(CO),(r15-C,~H,Me,)] [6], and it is note- 
worthy that in Ib C(1) is transoid to C(40), the carbon atom in the cage furthest 
from the tungsten atom. 

Compounds I undergo fltional behaviour as revealed by NMR studies; but 
limiting spectra are observed at - 80 o C. The data obtained at this temperature are 
in accord with the structure observed for Ib in the solid state. Thus in the room 
temperature ‘H and 13C-{1H} NMR spectra of Ib the carbaborane CMe groups 
display one broad signal at 6 2.20 (‘H) and 36.7 ppm (‘3C-{‘H)}. However, at 
- 80” C two CMe resonances in each spectrum are observed [3*]. Moreover, the 
13C-{1H} spectrum at this temperature shows two CO signals, whereas at ambient 

* Reference number with asterisk indicates a note in the list of references. 
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Fig. 1. The structure of the anionic complex [W(=CC,H,Me,-2,6)(C0)2(g6-CzBIaH,,Mez)]-. Structural 
parameters W-C(l) 1.84(l), W-C(O1) 2.00(l), W-C(O2) 2.01(l), W-c(20) 2.26(l), W-C(40), 2.56(l), 
B(3)-B(8) 1.99(2), B(7)-B(8) 1.98(2), B(3)-B(9) 1.81(2), B(5)-B(lO) 1.80(2) A; C@O)-W-C(l) 164.7(4), 
C(20)-W-C(O1) 156.9(5), W-C(l)-c(2) 175.6(9)O. 

temperatures only one peak is observed. The dynamic behaviour is attributed to a 
rotation of the W(=CR)(CO), fragment about an axis through the tungsten atom 
and the mid-point of the open carbaborane face. This process would be accompa- 
nied by a diamond-square-diamond rearrangement within the CzBloW cage which 
exchanges the two cage-carbon atoms between long and short connectivities with 
the tungsten atom. The ‘square’ faces revealed by the X-ray study would be 
re-orientated with respect to the CMe vertices [2,7]. 

Reactions between [AuCl(PPh,)] and I in thf, in the presence of KPF,, afford the 
complexes [WAu(p-CR)(CO),(PPh,)($-C2Bt0Hi0Me,)] (R = C,H,Me-4 (IIa) or 
C,H,Mq-2,6 (IIb) [8*]. Both compounds are formed as a mixture of two isomers, 
with each isomer undergoing flwrional behaviour of the type similar to that 
discussed above. Based on peak intensities in the NMR spectra, the isomer ratios 
are 2/3 for IIa, and l/4 for IIb. Interestingly, only one isomer exists for [WAu(p- 
CC,H,Me-4)(CO),(PPh,)(+C,%H9Me,)1, containing the icosahedral C,qW cage 
[lb]. We suggest that the two isomers of II arise as a consequence of the CR group 
being either transoid to a carbon atom in the face of the n6-C,B1,,H10Mez cage or 
transoid to a boron vertex. 

Treatment of Ia or Ib with [Rh(cod)(PPh3)2][PF6] affords the complexes 
[WRh(~-CR)(C0)2(PPh3)2(r16-C,B,,H,,Mez)] (R = C,H,Me-4 (IIIa) or C,H,Me,- 
2,6 (IIIb)). Both species undergo a fhncional process on the NMR time scale 
involving the core atoms of the cage similar to the salts I. However, compound IIIa 
is formed as a mixture of two isomers ((i) and (ii)) [9*]. The “B-{‘H} NMR 
spectrum of the major isomer (i) (75%) showed a diagnostic resonance at S 21.8 
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ppm (ref. BF, - Et20 external) for the presence of a B-H-R-h group [lqd], and as 
expected in a coupled i*B spectrum this signal appeared as a doublet (J(HB) 73 
Hz). The existence of two isomers of IIIa is in contrast with the existence of single 
isomers of IIIb and the previously prepared compound [WRh(&C,H,Me- 
4)(~O)~(PPh~)~(~5-C~~H~M~)] [lb]. The structure of the latter has been estab- 
lished by X-ray diffraction and the structures of IIIa (ii) and IIIb are presumably 
similar, except for substitution of the q6-C,BrOHIOMez group for the fragment 
n5-C,BgH9Me,. 

Finally, Ib undergoes a novel reaction with [Fe2(CO),] in thf giving the green 
crystalline complex [NEt~][WF~~-C~~H~Me~“2,6)(CO)~(~6-C~B~~H~~Me~)] (IV). 
The structure has been established by X-ray diffraction [lo*], the presence of the 
Fe(C0)2 group and the three-centre two-electron B-H-Fe bond thereby being 
confirmed. Reactions between salts of the anions [W(SR)(CO),($-C,BsH9Me2)1-‘ 
and [Fq(CO),] yield products with structures very different from that of IV [lc,d]. 
Thus [NEt,] ~W(~CC~H~M~-2,6~CO)~(~‘-C~~H~Me*)] and [Fez(CO),] afford 
the pentacarbonyl tungsten-iron complex ~NEt~][WF~~-CC~H~M~-2,6)(~0)~ ( q5- 
C,B,H,Mq)] in which the carbaborane group plays a spectator role, and an 
Fe(C0)3 group is present. 

The dimetal compounds reported herein provide the first examples of complexes 
cont~~ng the docosahedral C,B,,W group linked to another metal-ligand frag- 
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ment, and their isolation indicates that the salts I are likely to have an extensive 
chemistry. 
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